skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nath, Suman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Production distributed systems provide rich features, but various defects can cause a system to silently violate its semantics without explicit errors. Such failures cause serious consequences. Yet, they are extremely challenging to detect, as it requires deep domain knowledge and substantial manual efforts to write good checkers. In this paper, we explore a novel approach that directly derives semantic checkers from system test code. We first present a large-scale study on existing system test cases. Guided by the study findings, we develop T2C, a framework that uses static and dynamic analysis to transform and generalize a test into a runtime checker. We apply T2C on four large, popular distributed systems and successfully derive tens to hundreds of checkers. These checkers detect 15 out of 20 real-world silent failures we reproduce and incur small runtime overhead. 
    more » « less
    Free, publicly-accessible full text available July 7, 2026
  2. Debugging a failure usually requires reproducing it first. This can be hard for failures in production distributed systems, where bugs are exposed only by some unusual faulty events. While fault injection testing becomes popular, existing solutions are designed for bug finding. They are ineffective and inefficient to reproduce a specific failure during debugging. We explore a new type of fault injection technique for quickly reproducing a given fault-induced production failure in distributed systems. We present a tool, Anduril, that uses static causal analysis and a novel feedback-driven algorithm to quickly search the enormous fault space for the root-cause fault and timing. We evaluate Anduril on 22 real-world complex fault-induced failures from five large-scale distributed systems. Anduril reproduced all failures by identifying and injecting the root-cause faults at the right time, in a median of 8 minutes. 
    more » « less
    Free, publicly-accessible full text available November 4, 2025
  3. Free, publicly-accessible full text available November 4, 2025